
Accurate thickness computation
of a B-Rep model on the GPU

Grégoire Lemassona,b, Jean-Claude Iehla, F. Zaraa, Vincent Baudetb, Philippe Arthaudb, Behzad Shariata

aUniversité de Lyon, CNRS, Université Lyon 1, LIRIS, UMR5205, F-69100, Villeurbanne, France
bCT CoreTechnologie, F-69007, Lyon, France

a firstname.name@liris.cnrs.fr, b f.name@fr.coretechnologie.com

ABSTRACT
In this paper, we present a technique that calculates the thickness of a B-Rep model. This calculation is performed
directly on trimmed NURBS and not on a triangular approximation. We determine the thickness in parallel on
GPU, by computing the radius of maximal spheres contained within the B-Rep model. The results are presented
by a color-coded thickness map. A detailed study of our results demonstrates a very important gain in stability,
precision and computation time compared to others approaches.

Keywords
Thickness computation, B-Rep model, Parametric surfaces, Trimming curves, Newton iterations, GPU.

1 INTRODUCTION
In Computer Aided Design (CAD), Boundary Rep-
resentation models (classically denoted B-Rep) are
widely used for industrial design, prototyping and
production. B-Rep models contain a set of faces,
where each face is described by a parametric surface
(i.e. NURBS) restricted by oriented trimming curves.
Outer trimming curves define the shape of the surface
with zero or more inner trimming curves defining the
holes. To validate a product design, analysis like thick-
ness check are performed. Indeed, during the design
of a molded mechanical part, a particular attention
should be given to the thickness of the walls. This pa-
rameter is a good indicator of the cooling time, giving
information on how the material is deposited during its
injection in the mold, and thus where weaknesses could
appear. Usually, thickness computation is based on
the triangle-based approximation (tessellation) of the
model. Consequently, in function of required accuracy,
a high-quality tessellation is needed and this process is
time and memory consuming and cannot output very
high precision results.

Thickness [LDBR05, BBS10] is related to the skele-
ton or the Medial Axis Transform (MAT) of the model,
defined by the center of the maximal spheres that can
be contained inside the volume of the model. Thick-
ness is the value of the radius of these spheres. To de-
fine a skeleton or MAT , many methods such as voxel
based methods [Pal08, PNK12, RC11] have been pro-
posed. They can be easily parallelized on CPU using
threads. Mesh contraction methods [WL12, ATC+08,
HWCO+13] using points cloud [JKT13, MBC12] or
Voronoi diagram, and Delaunay triangulation [RT95,

CKM99] are other commonly used techniques. How-
ever, these methods are not precise enough for mechan-
ical design.

A direct computation on parametric surfaces, as pro-
posed by Lambourne et al. [LDBR05] seems to be an
adapted technique. Here, authors proposed a CPU-
based sequential method, but they did not take fully into
account some trimming configurations. Indeed, consec-
utive trimming curves could be only C0 continuous and
the trimming process can output erroneous results. Fur-
thermore their method may produce numerical instabil-
ities in GPU implementation, that uses single precision
floats. The instability occurs mainly in high curvature
surface zones.

In this paper, we present an efficient alternative paral-
lel solution based on Graphics Processing Units (GPU),
to compute the locus of the spheres center of B-Rep
models. We seek to satisfy two difficult to reconcile
conditions: high accuracy and computational speed. A
GPU-efficient implementation must respect two main
constraints. Firstly, the data must be organized to allow
a coherent memory access and a coherent execution on
each thread. Secondly, as the implemented method uses
newton iterations, care should be taken to prevent diver-
gence of computations. For theses reasons, the NURBS
patches are subdivided into relatively flat patches, more
suitable for computations using single precision floats.
Moreover, to respect the data coherence, we convert
NURBS into patches with the same degree. A similar
conversion is applied to the trimming curves.

In summary, the main contributions of this work are:

• proposing a thickness computation method on GPU,

• guaranteeing the stability of numerical compu-
tations despite of the use of single precision
floats,

• taking fully into account trimmed parametric sur-
faces on GPU.

This paper is organized as follows. First, in section
2, we present in detail our approach for the computa-
tion of the maximal sphere. In section 3, our results
are presented and fully discussed. and finally, section
4 presents the conclusion and the perspectives of our
work.

2 MAXIMAL SPHERE COMPUTA-
TION

As stated before, the calculation of the thickness con-
sists in finding the radius of the maximal spheres that
are at least bi-tangent to the boundary of the model.

A CAD model could be defined with more than several
tens of thousands of restricted parametric surface with
heterogeneous definitions. They may be NURBS from
degrees 2 to 5 or more, or constructive surfaces such
as blends or offsets, etc. Consequently, for the sam-
pling, as a first step, we have to convert theses surfaces
into several homogeneous bicubic Bézier patches using
a tolerance of 10−4 [PT97]. This high tolerance is used
to allow a good approximation of the original surfaces
and to have a set of relatively flat patches. The relative
flatness ensures a better convergence of the Newton it-
eration. Similarly to the surfaces, the curves must be
converted into monotonic segments [SF09]. Then, we
produce a dense sampling of the B-Rep model, gener-
ating a points set called s0. The opposite of the normal
direction at each sampled point is computed. Moreover,
we perform a coarse sampling of the B-Rep (less dense
than s0), called s1.

Spheres computation is carried out in two steps. The
first step called initialization, finds an approximation
of the maximal sphere: For each point O in the set of
points s0, the smallest sphere that tangentially touches
O, and is in contact with one other point P belonging
to the points set s1 on the model boundary should be
approximated (Fig. 1).

The second step is to refine the approximated sphere us-
ing Newton iterations. In this step, we compute spheres
that are bi-tangent at both points. Two configurations
may exist:

• sphere bi-tangent to two surfaces: surface/surface
sphere (cf. Fig. 2),

• sphere tangent to one surface and an edge shared by
two surface patches: surface/edge sphere (cf. Fig. 4).

In our approach, we firstly compute the maximal sphere
between two patches (cf. section 2.2). In case of com-
putational failure (when the sphere computation have
converged on the outer of the trimming of the surface),
a maximal sphere between an edge and a surface is
searched (cf. section 2.3). These steps are explained
hereafter. The algorithm 1 show our approach.

Algorithm 1 Computation of the maximal sphere
for all O ∈ s0 parallelized on GPU do

compute maximal surface/surface sphere
if sphere is outer the trimming then

compute maximal edge/surface sphere
end if

end for

2.1 Initialization
Each point O ∈ s0 is defined by its coordinates and ~d
the opposite direction of the surface normal at O. The
second point P belongs to s1 (full dots in the figure 1).

O

P

M~d

Figure 1: Computation of the approximated sphere.

The center M of the approximated sphere based on the
points O and P is defined by M = O+ t

−→
d , with t =

|| ~MP||. As in Lambourne et al. [LDBR05], whatever P
is, t can be defined as following:

t =
||P−O||2

2~d.(P−O)
(1)

with . being the dot product. This equation can result in
spheres lying outside the object, when ~d.(P−O) < 0.
Hence, for each point O, a good initialization consists
in seeking a point P among a points set s1, such that
the resulting t (P) is strictly the smallest positive dis-
tance. The identification of P gives another information
that is the parametric coordinates of P on the surface S1
(i.e. P = S1(u,v)).

To accelerate the computation of the approximated
sphere, the set s1 is stored into a Bounding Volume
Hierarchy (BVH), using Axis Aligned Bounding
Box (AABB) of s1. The aim of the BVH is to find

the minimal approximated sphere among a subset of
points, relatively close to the real minimal sphere.
For example, considering a point O with an approx-
imated sphere of radius t, the center of the sphere is
M = O+ t~d. If a smaller sphere exists, it is necessarily
computed with a point in s1 such that the distance
between M and P is inferior to 2t (the diameter of the
current sphere). By consequence, during the traversal
of the BVH, we compute the distance of M with the
AABB of the BVH node (when the point M is inside
the AABB, the distance is null). Only the nodes for
which the distance to M is inferior to 2t are traversed.
At the lowest level of BVH (the leaves), the value
of t is updated if a smaller computed radius is found
(according to equation 1).

The algorithm 2 summarizes the whole initialization
process implemented on GPU.

Algorithm 2 Initialization of the approximated sphere
for all O ∈ s0 parallelized on GPU do

Find P ∈ s1 using BVH for which the sphere is
minimal

end for

2.2 Maximal sphere between two surfaces
Figure 2 shows a maximal sphere S tangent to the sur-
face SO at a point O and tangent to the surface S1 at
the point P. Lambourne et al. [LDBR05] used a Quasi-
Newton method to minimize a system and obtain the
maximal sphere, using the equation 1. We propose a
more suitable system for a GPU implementation, insen-
sitive to numerical instability. Our solution uses New-
ton iterations with an adapted initialization. For this,
we define the constraints that should be respected by
the maximal sphere:

−→
MP⊥ S1u−→
MP⊥ S1v

t = || ~MP||
(2)

with (u,v) a point in the parametric domain of the sur-
face, and S1u and S1v the first derivatives in u and v di-
rections of surface S1.

Newton iterations.
In order to solve the above geometrical constraints, we
use Newton’s method:

Xn+1 = Xn− J−1(Xn).R(Xn), (3)

where R is the root to be found (R= 0), J is the Jacobian
matrix of R, and Xn is the vector of parameters to be
determined.

With P = S1(u,v), we propose to solve the system pre-
sented in equation 2 with the following equation:

~d
S

O

S0
S1

M

M = O+ t.~d

P

Figure 2: Computation of thickness using a sphere. The
thickness between S0 and S1 is the length of the radius
of the sphere, i.e. || ~MP|| or || ~MO||.

Xn =

un
vn
tn

 , R(X) =

 ~S1u(u,v).(S1(u,v)− (O+ t~d))
~S1v(u,v).(S1(u,v)− (O+ t~d))

t−||S1(u,v)− (O+ t~d)||

(4)

Newton iterations are performed while ||R||> ε , with ε

user-defined value, generally set to 10−4. Statistically
in our experiments, at most 15 iterations are sufficient
to obtain the required precision.

2.3 Maximal sphere between a surface
and an edge

In some configurations a maximal sphere could be tan-
gent to the surface S0 and the edge defined by two sur-
faces, S1 and S2 as illustrated in Fig. 4. This configu-
ration appears when the computed point P is outer the
surface S1 (cf. Fig. 3.). The intersection between the
surface S1 and the surface S2 is represented by an edge
(C3D).

S1

M

P

S0

O

Trimming
Curve

~d

Figure 3: A surface/surface sphere computed outer the
trimming.

For example in the Fig. 4, C3D = C1 ∈ S1 = C2 ∈ S2.
Then, we can obtain the parametric coordinate u of the
point P on C3D with P =C3D(u).

Obviously, the maximal sphere between the surface S0
at the point O, and the curve C3D should respect the
following constraints:{ −→

MP⊥C′3D
t = || ~MP||

(5)

O

~d
C3D

S1

S0

S2

M
P

C 1
C 2

Figure 4: The spherical thickness between a surface and
a 3D curve.

with C′3D is the first derivative of C3D at the point P.
Newton iterations are also used to determine the maxi-
mal sphere.

2.3.1 Detection of edge/surface sphere compu-
tation using trimming curves.

To determine if the previous surface/surface computa-
tion has failed, the location of the projection of the cen-
ter of the sphere on S1 must be checked according to
the trimming curves. For example, in the Figure 5, M
is the center of the surface/surface sphere tangent to the
surface S1 at the point P. But this latter is located on
the trimmed portion and therefore the surface/surface
sphere is inadequate.

S1

M

P
P′

S0

O

Trimming
Curve

~d

Figure 5: A point P lies on the trimmed portion. Point
P is projected on the trimming curve.

The point P is calculated during the computation of sur-
face/surface sphere. Then, we have P = S1(u,v), where
u and v are the results of the first step (cf. equation (4)).
Thus, to determine if P is outside the trimmed surface,
we must check if the parameters u and v are outside the
trim boundary of S1. We use the cross product × to
determine if the point is onside or outside of the trim
boundary. Let pc = c(tp) be the projection of P on the
trimming curve. If (

−−→
Ppc× c′(tp)).w > 0 (with c′(t) the

first derivative of c(t), pc the nearest point on c(t) and
w the third coordinate of the vector), the intersection is
inside the shape (see Figure 6).

Clearly if the point pc is the nearest point on c(t) to
P then

−−→
Ppc · c′(tp) = 0. Consequently, we use Newton

iterations with (as in [Sch90]):

tn+1 = tn−
(c(tn)−P) · c′(tn)

c′(tn)2 + c′′(tn) · (c(tn)−P)
(6)

c′(tp)
c(t)

P

c(tp)

Figure 6: Intersection point P inside the trim boundary
with (~Ppc× c′(tp)).w < 0.

where tn is an approximation of the parametric coor-
dinate tp at the nth iteration, and c′′(t) is the second
derivative of c(t). In this case, the system converges af-
ter three iterations. The first approximation of tn (i.e. t0)
is obtained by the projection of the point P on a linear
approximation of the trimming curve, c(t). The linear
approximation is a polyline passing through the points
c(0),c(1/3),c(2/3) and c(1).

Corner

The trimming loop is a set of consecutive trimming
curves, and in some cases the point P can be located
at the intersection of two consecutive curves. If these
consecutive trimming curves are not at least C1 contin-
uous at their junctions, a continuity break corner can
appear (see Figure 7). In this case the location of the
point P is uncertain.

ca(t)
cb(t)

c′a(1) −c′b(0)
ca(t)cb(t)

−c′b(0)

c′a(1)

(a) (b)P

P

corner

corner

Figure 7: Illustration of corner: a) concave or b) con-
vex. The colored zone is located within the face (non
trimmed portion).

If the intersection P is in a corner, P is nearest to the
curve ca(t) at the point ca(1), and nearest to the curve
cb(t) at the point cb(0), but according to the curve, P
can be detected inside or outside the face.

To solve this problem, we defined two categories of
corners: concave and convex corners. When the third
coordinate of the cross product (c′a(1)× c′b(0)).w < 0,
P is inside a concave corner and consequently within
the face (see Figure 7-a). Reciprocally, if (c′a(1)×
c′b(0)).w > 0, P is inside a convex corner and conse-
quently outside the face (see Figure 7-b).

2.3.2 Edge/surface computation
During the trimming computation, the projection of the
point P on the trimming curve C3D (the point P′ in the
Figure 5) is computed with P′ =C3D(u). The u param-
eter is used in the next step to initialize the system of
equations (5).

Newton iterations. The system presented in equa-
tion (5) is then solved using Newton iterations (cf. equa-

tion 7) to obtain the maximal sphere defined by param-
eters u and t.

Xn =

[
un
tn

]
, R(X) =

[
~C′3D(u).(C3D(u)− (O+ t~d))
t−||C3D(u)− (O+ t~d)||

]
(7)

Generally, a maximum of 20 iterations are performed to
obtain an accurate value.

3 RESULTS
We compared the time performance of our method
executed on a graphic card Nvidia GeForce GTX
580 M with the OpenCL language (http://www.
khronos.org/opencl/), with the thickness
checker of 3D Evolution software package, an in-
dustrial software developped by CT-Coretechnologie
(http://www.coretechnologie.de). Three
geometrical models called Lens, Mask and Mask1 of
the rear light of a car were used (see Figure 8 and
Table 1). The model Mask1 is a part of the model
Mask. It is a good compromise between complexity
and data size.

700 mm

300
m

m

(a)

600 mm

350
m

m
(b)

90
m

m

150 mm (c)
Figure 8: (a) The Lens model. (b) The Mask model. (c)
The Mask1 model.

Lens Mask Mask1
bicubic patches 88,581 27,188 12,793
cubic trimming curves 27,793 12,793 4,586

Table 1: Number of patches and trimming curves in the
three used B-Rep models

Speed-up. Figure 9 shows the speed-up obtained be-
tween the thickness checker of 3D Evolution and our
GPU-based thickness technique for the three above ob-
jects. The more the sampling is dense, the more the

acceleration with respect to Evolution is important. For
Mask1 model, (more than 3.5 millions sampling points)
the acceleration is more than 100 times faster than 3D
Evolution industrial software. This speedup can be ex-
plained by two main reasons. When the number of
points is large: (1) all the threads on the GPU are used;
(2) consecutive points are stored in the neighbouring
threads.

Figure 9: Performance comparison between 3D Evolu-
tion and our method.

Computation time. Figure 10 shows the computation
time in seconds for the three above B-Rep models using
several millions of threads. Our thickness computation
exhibits a linear complexity behavior. Indeed, only the
number of spheres increases while the size of the sam-
pling used for the initialization remains constant.

Figure 10: Computation time for the three models:
Lens, Mask and Mask1.

Accuracy. The accuracy depends on the number of iter-
ations of the Newton’s method. In our work, we used a
fixed number of iterations to have a coherent execution.
We can compute the average accuracy of the method us-
ing ‖R‖ (cf. section 2.2) where for ‖R‖= 0 the absolute
precision is obtained. In average, the precision of sur-
face/surface computation is around 10−6(see Figure 11.
The average precision for the curve/surface calculation

is around 10−6 mm. (see Figure 12). With this pre-

Figure 11: The distribution of the surface/surface New-
ton iterations precision.

Figure 12: The distribution of the 3Dcurve/surface
Newton iterations precision.

cision, the Newton iterations ensure that the sphere is
maximal and it is tangent to two surfaces, or to a sur-
face and a curve. In Figure 13, we can see different
maximal spheres computed with our thickness method.
The accuracy on 3D evolution depend of the model tes-
sellation, so to achieve the same accuracy as our method
would require a very fine tessellation.

(a) (b)

(c) (d)

Figure 13: Different results of our method. a) and b)
show a maximal sphere between two surfaces. c) and
d) show the maximal sphere between one curve and one
surface.

The thickness results of our approach are represented
by color coded thickness map (Figure 14) illustrates a
very good behaviour of our algorithms.
Memory consumption. Figure 15 illustrates the mem-
ory consumption of our approach. Whatever the num-

(a)

(b)

(c)
Figure 14: Colour coded thickness map for Lens (a),
Mask (b) and Mask1 (c) model. White color represents
a radius equal to zero. Red color represents the max-
imum radius of the spheres. The colors in ascending
order are: white, blue, green yellow and red.

ber of threads is, this memory consumption does not
change. The Figure 16 shows the total memory con-
sumption according to the number of spheres for Lens,
Mask and Mask1 models. This figure shows that the
GPU version is less memory consuming than the CPU
version (3D Evolution).

Model BVH Patches Trimming curves Total
Lens 12.94 23.50 1.45 37.90
Mask 5.38 9.69 0.69 15.76

Mask1 0.43 0.82 0.25 1.5

Figure 15: Memory consumption in Mb

Comparison with Lambourne’s method. We also
implemented the method presented in [LDBR05] on a
core i7-280Qm 2.30 GHz processor to compare it with
our method. Performance differences between the two
methods for the three Lens, Mask and Mask1 models
were relatively constant and our method is on average
18 times faster. This quasi-constant acceleration fac-
tor can be explained by the similarity between the two
methods.

To compare both methods on the same basis, we also
implemented Lambourne’s method on the GPU. How-
ever, this method is not directly implementable on the
GPU. Indeed, the use of NURBS of variable degree

a)

b)

c)
Figure 16: The memory consumption in mB according
to the number of threads for the thickness of Evolution
and our thickness computation on the model Lens (a),
Mask (b) and Mask1 (c).

does not respect data consistency or instructions coher-
ences of GPU programming. Moreover, the interroga-
tion of certain high degree surfaces can induce numeri-
cal instability, when using 32-bit floats. Consequently,
we converted all surfaces into bicubic Bezier patches.

Lambourne et al.used a Quasi-Newton method to mini-
mize their system. As stated before, this system imple-
mented on GPU can produce instability. The Figure 17
shows color coded thickness map output by both meth-

ods. We can observe that in the left image a set of red
dots that does not appear on the right image, produced
by our approach. These points represent the non con-
vergence of the computations. This instability is due
to the second derivative terms of the Hessian matrix.
Indeed the second derivatives are subject to instability.
On the contrary, our method use first derivatives for the
Jacobian matrix that are simpler to compute and more
stable.

a) b)
Figure 17: Comparison of the results. a) Lambourne et
al., b) our Method.

4 CONCLUSIONS
In this paper, we have presented a thickness computa-
tion using maximal spheres on a B-Rep model. This
computation uses the massively parallel architecture of
the GPUs. This permitted to improve existing meth-
ods, by obtaining faster, more stable and more precise
results with single precision floats.

We also presented a method for regions containing
holes, and applied this technique for direct trimming of
parametric surfaces. This method provides very good
results even if the consecutive trimming curves are only
C0 continuous. In summary, this method can be applied
to all parametric curves, and does not need complex
pre-computations.

The maximal spheres centres represent a sampling of
the skeleton of the object. This can help the computa-
tion of the mid-face or neutral fibre of the object, com-
monly used in finite element analysis. For this, in a near
future, we plan to refine the medial axis transform in the
branching zones, where a tri-tangent calculation is nec-
essary, and to suppress unwanted skeleton branches.

5 REFERENCES
[ATC+08] Oscar Kin-Chung Au, Chiew-Lan Tai,

Hung-Kuo Chu, Daniel Cohen-Or, and
Tong-Yee Lee. Skeleton extraction by
mesh contraction. ACM Trans. Graph.,
27(3), 2008.

[BBS10] Terence M. Bahlen, Willem F.
Bransvoort, and Allan D. Spence. Ex-
traction and visualization of dimensions
from a geometric model. Computer-
Aided Design & Applications, pages
579–589, 2010.

[CKM99] Tim Culver, John Keyser, and Dinesh
Manocha. Accurate computation of the
medial axis of a polyhedron. In Pro-
ceedings of the Fifth ACM Symposium
on Solid Modeling and Applications,
pages 179–190, New York, NY, USA,
1999. ACM.

[HWCO+13] H. Huang, S. Wu, D. Cohen-Or,
M. Gong, H. Zhang, G. Li, and B.Chen.
L1-medial skeleton of point cloud. ACM
Transactions on Graphics, 32:65:1–
65:8, 2013.

[JKT13] Andrei C. Jalba, Jacek Kustra, and
Alexandru Telea. Surface and curve
skeletonization of large 3d models on the
gpu. IEEE Trans. Pattern Anal. Mach.
Intell., 35(6):1495–1508, 2013.

[LDBR05] J. G. Lambourne, Z. Djuric, D. Brujic,
and M. Ristic. Calculation and visuali-
sation of the thickness of 3d cad models.
In Shape Modeling and Applications,
2005 International Conference, pages
338–342, 2005.

[MBC12] Jaehwan Ma, Sang Won Bae, and
Sunghee Choi. 3d medial axis point ap-
proximation using nearest neighbors and
the normal field. The Visual Computer,
28(1):7–19, 2012.

[Pal08] Kálmán Palágyi. A 3d fully parallel
surface-thinning algorithm. Theor. Com-
put. Sci., 406:119–135, 2008.

[PNK12] Kálmán Palágyi, Gábor Németh, and
Péter Kardos. Topology preserving
parallel 3d thinning algorithms. In
Valentin E. Brimkov and Reneta P.
Barneva, editors, Digital Geometry Al-
gorithms, volume 2 of Lecture Notes in
Computational Vision and Biomechan-
ics, pages 165–188. Springer Nether-
lands, 2012.

[PT97] Les Piegl and Wayne Tiller. The NURBS
Book (2Nd Ed.). Springer-Verlag New
York, Inc., New York, NY, USA, 1997.

[RC11] Benjamin Raynal and Michel Cou-
prie. Isthmus-based 6-directional par-
allel thinning algorithms. In Proc. of
the 16th IAPR international conference
on Discrete Geometry for Computer Im-
agery, pages 175–186, Berlin, Heidel-
berg, 2011. Springer-Verlag.

[RT95] Jayachandra M Reddy and George M
Turkiyyah. Computation of 3d skeletons
using a generalized delaunay triangula-
tion technique. Computer-Aided Design,

27(9):677 – 694, 1995.
[Sch90] Philip J. Schneider. Graphics gems. In

Andrew S. Glassner, editor, Graphics
gems, chapter An algorithm for auto-
matically fitting digitized curves, pages
612–626. Academic Press Professional,
Inc., San Diego, CA, USA, 1990.

[SF09] Andre Schollmeyer and Bernd Fröhlich.
Direct trimming of nurbs surfaces on
the gpu. In ACM SIGGRAPH’09, pages
47:1–47:9, New York, NY, USA, 2009.
ACM.

[WL12] Chris G. Willcocks and Frederick W. B.
Li. Feature-varying skeletonization: In-
tuitive control over the target feature size
and output skeleton topology. Vis. Com-
put., 28(6-8):775–785, 2012.

